O-minimality and the André-Oort conjecture for C
نویسنده
چکیده
We give an unconditional proof of the André-Oort conjecture for arbitrary products of modular curves. We establish two generalizations. The first includes the Manin-Mumford conjecture for arbitrary products of elliptic curves defined over Q as well as Lang’s conjecture for torsion points in powers of the multiplicative group. The second includes the Manin-Mumford conjecture for abelian varieties defined over Q. Our approach uses the theory of o-minimal structures, a part of Model Theory, and follows a strategy proposed by Zannier and implemented in three recent papers: a new proof of the Manin-Mumford conjecture by Pila-Zannier; a proof of a special (but new) case of Pink’s relative Manin-Mumford conjecture by Masser-Zannier; and new proofs of certain known results of André-Oort–Manin-Mumford type by Pila. 2010 Mathematics Subject Classification: 11G18, 03C64
منابع مشابه
O-minimality and the André-Oort conjecture for Cn
We give an unconditional proof of the André-Oort conjecture for arbitrary products of modular curves. We establish two generalizations. The first includes the Manin-Mumford conjecture for arbitrary products of elliptic curves defined over Q as well as Lang’s conjecture for torsion points in powers of the multiplicative group. The second includes the ManinMumford conjecture for abelian varieties...
متن کاملO-minimality as an Approach to the André-oort Conjecture
— Employing a proof technique suggested by Zannier and first successfully implemented by Pila and Zannier to give a reproof of the Manin-Mumford conjecture on algebraic relations on torsion points of an abelian variety, Pila presented an unconditional proof of the André-Oort conjecture when the ambient Shimura variety is a product of modular curves. In subsequent works, these results have been ...
متن کاملA Combination of the Conjectures of Mordell-Lang and André-Oort
We propose a conjecture combining the Mordell-Lang conjecture with an important special case of the André-Oort conjecture, and explain how existing results imply evidence for it. Mathematics Subject Classification: 14G35, 14K12 (11F32, 11F72, 11G15, 11G18)
متن کاملThe André-Oort conjecture for products of Drinfeld modular curves
Let Z = X1×· · ·×Xn be a product of Drinfeld modular curves. We characterize those algebraic subvarieties X ⊂ Z containing a Zariski-dense set of CM points, i.e. points corresponding to n-tuples of Drinfeld modules with complex multiplication (and suitable level structure). This is a characteristic p analogue of a special case of the André-Oort conjecture.
متن کاملA Case of the Dynamical André-oort Conjecture
We prove a special case of the Dynamical André-Oort Conjecture formulated by Baker and DeMarco [3]. For any integer d ≥ 2, we show that for a rational plane curve C parametrized by (t, h(t)) for some non-constant polynomial h ∈ C[z], if there exist infinitely many points (a, b) ∈ C(C) such that both zd+a and zd+b are postcritically finite maps, then h(z) = ξz for a (d − 1)-st root of unity ξ. A...
متن کامل